Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
2.
BMC Complement Med Ther ; 24(1): 161, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632548

RESUMO

BACKGROUND: Polygonum multiflorum (PM), a widely used traditional Chinese medicine herb, is divided into two forms, namely raw polygonum multiflorum (RPM) and polygonum multiflorum praeparata (PMP), according to the processing procedure. Emerging data has revealed the differential hepatotoxicity of RPM and PMP, however, its potential mechanism is still unclear. METHODS: In our study, we investigated the differential hepatotoxicity of RPM and PMP exerted in C57BL/6 mice. First, sera were collected for biochemical analysis and HE staining was applied to examine the morphological alternation of the liver. Then we treated L02 cells with 5 mg / mL of RPM or PMP. The CCK8 and EdU assays were utilized to observe the viability and proliferation of L02 cells. RNA sequencing was performed to explore the expression profile of L02 cells. Western blotting was performed to detect the expression level of ferroptosis-related protein. Flow cytometry was used to evaluate ROS accumulation. RESULTS: In our study, a significant elevation in serum ALT, AST and TBIL levels was investigated in the RMP group, while no significant differences were observed in the PMP group, compared to that of the CON group. HE staining showed punctate necrosis, inflammatory cell infiltration and structural destruction can be observed in the RPM group, which can be significantly attenuated after processing. In addition, we also found RPM could decrease the viability and proliferation capacity of L02 cells, which can be reversed by ferroptosis inhibitor. RNA sequencing data revealed the adverse effect of PM exerted on the liver is closely associated with ferroptosis. Western blotting assay uncovered the protein level of GPX4, HO-1 and FTL was sharply decreased, while the ROS content was dramatically elevated in L02 cells treated with RPM, which can be partially restored after processing. CONCLUSIONS: The hepatotoxicity induced by RPM was significantly lower than the PMP, and its potential mechanism is associated with ferroptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fallopia multiflora , Polygonum , Animais , Camundongos , Fallopia multiflora/química , Polygonum/química , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL
3.
J Med Food ; 27(4): 287-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442325

RESUMO

Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.


Assuntos
Fallopia multiflora , Osteoporose , Ratos , Masculino , Animais , Glucocorticoides/efeitos adversos , Reynoutria , Proteína Beclina-1 , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
4.
Anal Bioanal Chem ; 416(7): 1733-1744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347251

RESUMO

The processing of traditional Chinese medicine (TCM) plays an important role in the clinical application, which usually has the function of "increasing efficiency and reducing toxicity". Polygonum multiflorum (PM) has been reported to induce hepatotoxicity, while it is believed that the toxicity is reduced after processing. Studies have shown that the hepatotoxicity of PM is closely related to the changes in chemical components before and after processing. However, there is no comprehensive investigation on the chemical changes of PM during the processing progress. In this research, we established a comprehensive method to profile both small molecule compounds and polysaccharides from raw and different processed PM samples. In detail, an online two-dimensional liquid chromatography coupled with quadrupole-orbitrap mass spectrometry (2D-LC/Q-Orbitrap MS) was utilized to investigate the small molecules, and a total of 150 compounds were characterized successfully. After multivariate statistical analysis, 49 differential compounds between raw and processed products were screened out. Furthermore, an accurate and comprehensive method for quantification of differential compounds in PM samples was established based on ultra-high performance liquid chromatography/Q-Orbitrap-MS (UHPLC/Q-Orbitrap-MS) within 16 min. In addition, the changes of polysaccharides in different PM samples were analyzed, and it was found that the addition of black beans and steaming times would affect the content and composition of polysaccharides in PM significantly. Our work provided a reference basis for revealing the scientific connotation of the processing technology and increasing the quality control and safety of PM.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Fallopia multiflora , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Fallopia multiflora/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polissacarídeos
5.
J Ethnopharmacol ; 326: 117865, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369066

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY: The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS: The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS: Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-ß1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS: Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Polygonum , Estilbenos , Camundongos , Masculino , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Citocinas/genética , Imunidade , Estilbenos/toxicidade , Estilbenos/uso terapêutico
6.
Int J Biol Macromol ; 257(Pt 2): 128724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103673

RESUMO

Polygonum multiflorum Thunb (PM) is used to slow the aging process. Although polysaccharides are a major constituent of PM, their anti-aging properties have not been thoroughly investigated. Therefore, this study aimed to examine the anti-aging effects of polysaccharides extracted from PM using the Caenorhabditis elegans (C. elegans) model. Two types of water-soluble heteropolysaccharides, namely a neutral polysaccharide (RPMP-N) and an acidic polysaccharide (RPMP-A), were obtained from PM. Their structures were elucidated by various methods. The effects of these polysaccharides on the lifespan, levels of antioxidants, and activities of antioxidant-related enzymes in C. elegans were also evaluated. The results showed that RPMP-A had higher GalA content compared with RPMP-N. The average molecular weights of RPMP-N and RPMP-A were 245.30 and 28.45 kDa, respectively. RPMP-N is a α-1,4-linked dextran as the main chain, and contains a small amount of branched dextran with O-6 as the branched linkage site;RPMP-A may be a complex of α-1,4-linked dextran, HG and RG-I. Treatment with RPMP-N and RPMP-A increased the mean lifespan of C. elegans, and significantly regulated oxidative stress. RPMP-A exhibited stronger anti-aging effects compared with RPMP-N. These findings suggest that RPMP-A may be a potent antioxidant and anti-aging component that can be used for developing functional food products and effective dietary supplements.


Assuntos
Caenorhabditis elegans , Fallopia multiflora , Animais , Antioxidantes/farmacologia , Dextranos/farmacologia , Envelhecimento , Estresse Oxidativo , Polissacarídeos/farmacologia , Polissacarídeos/química
7.
Plant Physiol Biochem ; 206: 108279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128226

RESUMO

Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.


Assuntos
Fallopia multiflora , Estilbenos , Fallopia multiflora/genética , Fallopia multiflora/química , Antraquinonas/análise , Tubérculos/química , Solo , Concentração de Íons de Hidrogênio
8.
J Nat Med ; 77(4): 880-890, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587329

RESUMO

The roots of Polygonum multiflorum Thunberg (Polygonaceae) are used as a crude drug Kashu that is considered to improve blood deficiency based on a Kampo concept. Kashu has been included in Kampo formulas, such as Tokiinshi, which is used to treat eczema and dermatitis with itchiness by inhibiting inflammation and facilitating blood circulation in the skin. However, the effects of P. multiflorum roots on erythropoiesis are unclear. Previously, we isolated six phenolic constituents from an ethyl acetate (EtOAc)-soluble fraction of P. multiflorum root extract and identified them as (E)-2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside [(E)-THSG], emodin, emodin-8-O-ß-D-glucopyranoside, physcion, physcion-8-O-ß-D-glucopyranoside, and catechin. To examine whether P. multiflorum roots facilitate erythropoiesis, the EtOAc-soluble fraction was orally administered to healthy ICR mice. When compared with mice fed a standard diet alone (Controls), the mice fed a diet including the EtOAc-soluble fraction exhibited significantly higher serum erythropoietin (Epo) levels. The renal Epo mRNA levels in EtOAc-soluble fraction-administered mice were significantly higher than those in the control mice. Then, we administered roxadustat, which is a drug to treat the patient suffering with renal anemia by specifically inhibiting hypoxia-inducible factor prolyl hydroxylases. Roxadustat slightly increased renal Epo mRNA levels in healthy mice. Administration of (E)-THSG, a major constituent, significantly increased serum Epo levels. It is likely that (E)-THSG may facilitate the process to convert inactive renal Epo-producing cells to active Epo-producing cells. Collectively, it is implied that (E)-THSG in the EtOAc-soluble fraction of P. multiflorum roots may primarily improve blood deficiency of Kampo concept by promoting erythropoiesis.


Assuntos
Emodina , Eritropoetina , Fallopia multiflora , Animais , Camundongos , Camundongos Endogâmicos ICR
9.
Bioorg Chem ; 135: 106491, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011521

RESUMO

PTP1B plays an important role as a key negative regulator of tyrosine phosphorylation associated with insulin receptor signaling in the therapy for diabetes and obesity. In this study, the anti-diabetic activity of dianthrone derivatives from Polygonum multiflorum Thunb., as well as the structure-activity relationships, mechanism, and molecular docking were explored. Among these analogs, trans-emodin dianthrone (compound 1) enhances insulin sensitivity by upregulating the insulin signaling pathway in HepG2 cells and displays considerable anti-diabetic activity in db/db mice. By using photoaffinity labeling and mass spectrometry-based proteomics, we discovered that trans-emodin dianthrone (compound 1) may bind to PTP1B allosteric pocket at helix α6/α7, which provides fresh insight into the identification of novel anti-diabetic agents.


Assuntos
Diabetes Mellitus , Emodina , Fallopia multiflora , Camundongos , Animais , Fallopia multiflora/química , Fallopia multiflora/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
10.
Food Funct ; 14(9): 4204-4212, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37067244

RESUMO

Elucidating the underlying mechanism of the processing of Chinese herbal medicine (CHM) is crucial and also challenging for the modernization of Traditional Chinese Medicine (TCM). Herein, inspired by the traditional method for processing the Chinese herb Polygonum multiflorum (PM) Thunb with excipient black beans, the representative herbal components trans-2,3,5,4'-tetrahydroxystilbene 2-O-ß-D-glucopyranoside (TSG) and cyanidin-3-O-ß-glucoside (C3G) from each herbal medicine were selected to investigate the processing mechanism at the supramolecular level. The co-assemblies of TSG/C3G were found to be formed, and their structure was characterized by electronic microscopy and a small angle X-ray scattering (SAXS) technique. In addition, the supramolecular interactions between TSG and C3G were fully probed with UV-Vis, fluorescence, XRD, and NMR spectroscopy. Molecular dynamics were further performed to simulate the assembly processes of TSG and C3G. Notably, the formation of TSG/C3G co-assemblies was found to significantly enhance the stability of TSG against light, Fe3+, and simulated intestinal fluids. The co-assembly of TSG and C3G that leads to supramolecular aggregates discovered here may imply the underlying mechanism of processing PM with black beans. Our results may also suggest that a new effective form of TCM is supramolecular aggregates rather than each component.


Assuntos
Fallopia multiflora , Estilbenos , Fallopia multiflora/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Medicina Tradicional Chinesa
11.
Int J Biol Macromol ; 235: 123901, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36871693

RESUMO

The raw and processed Polygonum multiflorum Thunb (PM) are used to treat different diseases, and PM has also been reported to have hepatotoxic effects. Moreover, mounting evidence indicates that processed PM is less toxic than raw PM. The changes in efficacy and toxicity of PM during the processing are closely related to the changes in chemical composition. Previous studies have mainly focused on the changes of anthraquinone and stilbene glycosides during process. Polysaccharides, as main components of PM, showed many pharmacological effects, but its changes in the processing has been neglected for a long time. In this study, the polysaccharides of PM in the raw (RPMPs) and processed products (PPMPs) were determined and the liver injury model induced by acetaminophen was utilized to evaluate the impact of polysaccharides on the liver. Results showed that the heteropolysaccharides RPMPs and PPMPs both comprised Man, Rha, GlcA, GalA, Glc, Ara and Xyl, but markedly differed in polysaccharide yield, molar ratio of monosaccharide composition and Mw. In vivo analysis, results showed that demonstrated that RPMPs and PPMPs both exerted hepatoprotective effects by upregulating antioxidant enzymes and repressing lipid peroxidation. It is noteworthy that the polysaccharide yield of processed PM was seven-fold higher than that of raw PM, so it is speculated that processed PM has better hepatoprotective effects at the same dose of decoction. The present work provides an important foundation for studying the polysaccharide activity of PM and further revealing the processing mechanism of PM. This study also proposed a new hypothesis that the significant increase of polysaccharide content in processed PM may be another reason that the product PM causes less liver injury.


Assuntos
Medicamentos de Ervas Chinesas , Fallopia multiflora , Humanos , Masculino , Fallopia multiflora/química , Polissacarídeos/farmacologia , Medicamentos de Ervas Chinesas/química , Fígado , Antioxidantes/farmacologia
12.
J Ethnopharmacol ; 308: 116217, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36758914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum Radix (PMR) is the dried root tuber of Polygonum multiflorum Thunb., which has been used in the clinic for a variety of pharmacological activities. However, Polygonum multiflorum Radix-induced liver injury (PMR-ILI) has been reported in recent years, which has limited its clinical use to some extent. The occurrence of PMR-ILI is not universal, so finding the different metabolic characteristics between PMR-ILI and Polygonum multiflorum Radix-tolerance group (PMR-T) is very important for the PMR rational clinical application and PMR-ILI early clinical diagnosis. METHODS: In this study, 6 clinical plasma samples of PMR-ILI and 13 PMR-T were collected and analyzed by high-resolution liquid chromatography-mass spectrometry. Firstly, the differential metabolites of the two groups were screened by conventional screening methods such as multivariate statistical analysis. Secondly, the characteristic metabolites with greater contribution, correlation with liver injury and high sensitivity were screened by correlation analysis with clinical liver injury indicators, random forest analysis, and receiver operating characteristic curve (ROC). RESULTS: After multivariate statistical analysis and screening analysis, 29 differential metabolites were identified. Compared with PMR-T group, the metabolism of glycerol and phospholipid, glutamine and glutamate, phenylalanine, sphingolipid and tryptophan in PMR-ILI group were disturbed. After correlation analysis with liver injury indexes and random forest screening, 8 potential biomarkers closely related to clinical liver injury were obtained. Finally, 3 potential biomarkers with high expression in PMR-ILI, hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodesoxycholic acid, were screened out through the analysis of ROC, which can provide a basis for the early clinical diagnosis. CONCLUSION: Based on the analysis of the PMR-ILI and PMR-T plasma samples by LC-MS, three biomarkers of clinical liver injury of Polygonum multiflorum Radix were selected: hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodeoxycholic acid.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Programas de Rastreamento , Humanos , Biomarcadores/sangue , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , Fallopia multiflora/toxicidade , Programas de Rastreamento/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
13.
Phytomedicine ; 112: 154710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805481

RESUMO

BACKGROUND: Polygonum multiflorum Thunb. (PM) is well known both in China and other countries of the world for its tonic properties, however, it has lost its former glory due to liver toxicity incidents in recent years. PURPOSE: The purpose of this study is to determine whether the occurrence of herb-drug interaction (HDI) caused by PM is associated with cytochrome P450 (CYP450) based on pharmacokinetic studies and in vitro inhibition assays. The objective was to provide a reference for the rational and safe use of drugs in clinical practice. METHODS: In this study, raw PM (R), together with its two processed products which included PM by Chinese Pharmacopoeia (M) and PM by "nine cycles of steaming and sunning (NCSS)" ("9"), were prepared as the main research objects. A method based on fluorescence technology was used to evaluate the inhibition levels of raw and processed PMs, as well as corresponding characteristic compounds on seven recombinant human cytochrome P450s (rhCYP450s). The pharmacokinetics of sulindac (a representative of commonly used nonsteroidal anti-inflammatory drugs) and psoralen (a major compound of Psoralea in combination with PM) in rat plasma were studied when combined with raw and different processed products of PM. RESULTS: The inhibitory level order of the three extracts on major different subtypes of CYP450 (CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, and CYP3A4) was: R > M > "9". However, the inhibition level of R and "9" is higher than that of M on CYP2C9. Further studies showed that trans-THSG and emodin could selectively inhibit CYP3A4 and CYP1A2, respectively. Epicatechin gallate mainly inhibited CYP3A4 and CYP1A2, followed by CYP2C8 and CYP2C9. Genistein mainly inhibited CYP3A4, followed by CYP2C9 and CYP2C8. CYP3A4 and CYP2C9 were also inhibited by daidzein. The inhibitory effects of all the PM extracts were associated with their characteristic compounds. The results of HDI showed that R increased sulindac exposure to rat blood, and R and M increased psoralen exposure to rat blood, which were consistent with corresponding metabolic enzymes. Overall, the in vitro and in vivo results indicated that PM, especially R, would be at high risk to cause toxicity and drug interactions via CYP450 inhibition. CONCLUSION: This study not only elucidates the scientific connotation of "efficiency enhancement and toxicity reduction" of PM by NCSS from the perspective of metabolic inhibition but also contributes to HDI prediction and appropriate clinical medication of PM.


Assuntos
Fallopia multiflora , Furocumarinas , Humanos , Ratos , Animais , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C8 , Fallopia multiflora/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interações Ervas-Drogas , Sulindaco , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Extratos Vegetais/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo
14.
World J Gastroenterol ; 29(1): 171-189, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683716

RESUMO

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a severe threat to human health. Polygonum multiflorum (PM) has been proven to remedy mitochondria and relieve MAFLD, but the main pharmacodynamic ingredients for mitigating MAFLD remain unclear. AIM: To research the active ingredients of PM adjusting mitochondria to relieve high-fat diet (HFD)-induced MAFLD in rats. METHODS: Fat emulsion-induced L02 adipocyte model and HFD-induced MAFLD rat model were used to investigate the anti-MAFLD ability of PM and explore their action mechanisms. The adipocyte model was also applied to evaluate the activities of PM-derived constituents in liver mitochondria from HFD-fed rats (mitochondrial pharmacology). PM-derived constituents in liver mitochondria were confirmed by ultra-high-performance liquid chromatography/mass spectrometry (mitochondrial pharmacochemistry). The abilities of PM-derived monomer and monomer groups were evaluated by the adipocyte model and MAFLD mouse model, respectively. RESULTS: PM repaired mitochondrial ultrastructure and prevented oxidative stress and energy production disorder of liver mitochondria to mitigate fat emulsion-induced cellular steatosis and HFD-induced MAFLD. PM-derived constituents that entered the liver mitochondria inhibited oxidative stress damage and improved energy production against cellular steatosis. Eight chemicals were found in the liver mitochondria of PM-administrated rats. The anti-steatosis ability of one monomer and the anti-MAFLD activity of the monomer group were validated. CONCLUSION: PM restored mitochondrial structure and function and alleviated MAFLD, which may be associated with the remedy of oxidative stress and energy production. The identified eight chemicals may be the main bioactive ingredients in PM that adjusted mitochondria to prevent MAFLD. Thus, PM provides a new approach to prevent MAFLD-related mitochondrial dysfunction. Mitochondrial pharmacology and pharmacochemistry further showed efficient strategies for determining the bioactive ingredients of Chinese medicines that adjust mitochondria to prevent diseases.


Assuntos
Fallopia multiflora , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Camundongos , Animais , Emulsões/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo
15.
Braz. J. Pharm. Sci. (Online) ; 59: e21570, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1429960

RESUMO

Abstract This study investigated the changes in the ingredients in Fallopia multiflora Thunb. Haraldson (FMT) root after processing it with different methods such as soaking, stewing, and steaming or combined methods. The total polyphenol, 2,3,5,4'-tetrahydroxystilben-2-O-ß-D-glucoside (THSG), and physcion contents in FMT products after processing were determined using high-performance liquid chromatography (HPLC) and ultraviolet-visible (UV-VIS) methods. The results demonstrated that the processing method and time significantly affected the contents of polyphenol, THSG, and physcion. The physcion and total polyphenol content increased or decreased during processing depending upon the processing time, while the THSG content gradually decreased with an increase in the processing time. The content of physcion (a substance that can cause liver toxicity) was analysed, and the suitable conditions for processing of the FMT products were determined as initial soaking in rice swill for 24 h and subsequent stewing with black beans and water for 12 h


Assuntos
Fallopia multiflora/genética , Métodos , Cromatografia Líquida de Alta Pressão/métodos , Polifenóis/agonistas , Fígado/anormalidades
16.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500685

RESUMO

Polygonum multiflorum (PM) has been used as a tonic and anti-aging remedy for centuries in Asian countries. However, its application in the clinic has been hindered by its potential to cause liver injury and the lack of investigations into this mechanism. Here, we established a strategy using a network pharmacological technique combined with integrated pharmacokinetics to provide an applicable approach for addressing this issue. A fast and sensitive HPLC-QQQ-MS method was developed for the simultaneous quantification of five effective compounds (trans-2,3,5,4'-tetrahydroxystilbene-2-O-ß-d-glucoside, emodin-8-O-ß-d-glucoside, physcion-8-O-ß-d-glucoside, aloe-emodin and emodin). The method was fully validated in terms of specificity, linearity, accuracy, precision, extraction recovery, matrix effects, and stability. The lower limits of quantification were 0.125-0.500 ng/mL. This well-validated method was successfully applied to an integrated pharmacokinetic study of PM extract in rats. The network pharmacological technique was used to evaluate the potential liver injury due to the five absorbed components. Through pathway enrichment analysis, it was found that potential liver injury is primarily associated with PI3K-Akt, MAPK, Rap1, and Ras signaling pathways. In brief, the combined strategy might be valuable in revealing the mechanism of potential liver injury due to PM.


Assuntos
Fallopia multiflora , Polygonum , Ratos , Animais , Fosfatidilinositol 3-Quinases , Glucosídeos/farmacocinética , Fígado
17.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234820

RESUMO

Steaming is a characteristic pharmaceutical skill in Traditional Chinese Medicine (TCM). Polygonum multiflorum radix (PM) and its steamed products have been used in Asia for centuries. Raw Polygonum multiflorum radix (RPM) is commonly used to promote defecation but can exert toxicity, especially in liver injury. However, RPM can be made converted into Polygoni multiflori radix praeparata (PMP) by steaming; this is considered a good method to reduce defecation and liver injury caused by PM in Asia. The chemical constituents of TCM are the key to its action. We systematically analyzed the effect of steaming on PM constituents, defecation, and liver injury. We identified 13 main constituents from PM and PMP; the results showed that after being steamed, two constituents (TSG, catechin) had decreased, six constituents (such as procyanidin B1 or B2) had disappeared, four constituents (such as emodin, physcion) had increased, emodin-8-O-ß-D-glucoside remained unchanged in PMP. Pharmacological experiments showed that PM could promote defecation; however, there were no obvious effects in response to PMP. Only a high dose of PM for 14 days caused some degree of liver injury, although this injury disappeared after 14 days of drug withdrawal. Network pharmacology and molecular docking studies showed that TSG, emodin and physcion were the most effective in promoting defecation and causing liver injury. Collectively, our findings show that steaming can reduce the effect of PM on promoting defecation and reducing liver injury. TSG may be one of the important constituents in PM that can promote defecation and cause liver injury.


Assuntos
Catequina , Medicamentos de Ervas Chinesas , Emodina , Fallopia multiflora , Polygonum , Catequina/farmacologia , Defecação , Medicamentos de Ervas Chinesas/química , Emodina/análogos & derivados , Emodina/farmacologia , Fígado , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Polygonum/química , Vapor/análise
18.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235293

RESUMO

In recent years, the hepatotoxicity of Polygoni Multiflora Radix (PMR) has attracted increased research interest. Some studies suggest that anthraquinone may be the main hepatotoxic component. Most of the relevant studies have focused on the mononuclear anthraquinone component rather than binuclear anthraquinones. The hepatotoxicity of dinuclear anthraquinone (dianthrone) was investigated in a cell-based model. Next, a method for the determination of six free and total dianthonones in PMR and PMR Praeparata (PMRP) was established using ultra-high-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QQQ-MS/MS), which was then used to analyze the collected samples. The data show that four binuclear anthraquinone compounds were hepatotoxic and may be potential toxicity indicators for the safety evaluation of PMR and PMRP. Herein, we provide a theoretical basis for the improvement of PMRP quality standards.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Fallopia multiflora , Polygonum , Antraquinonas/análise , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Fallopia multiflora/química , Raízes de Plantas/química , Polygonum/química , Controle de Qualidade , Espectrometria de Massas em Tandem
19.
J Ethnopharmacol ; 298: 115620, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963419

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum Thunb. (PM) is a herb, extracts of which have been used as Chinese medicine for years. Although it is believed to be beneficial to the liver, heart, and kidneys, it causes idiosyncratic drug-induced liver injury (DILI). AIM OF THE STUDY: We propose that the intrinsic DILI caused by natural products in PM (NPPM) is an important complementary mechanism to PM-related herb-induced liver injury, and aim to identify the ingredients with high DILI potential by machine learning methods. MATERIALS AND METHODS: One hundred and ninety-seven NPPM were collected from the literature to identify the intrinsic hepatotoxic compounds. Additionally, a DILI-labeled dataset consisting of 2384 compounds was collected and randomly split into training and test sets. A diparametric optimization method was developed to tune the parameters of extended-connectivity fingerprints (ECFPs), Rdkit, and atom-pair fingerprints as well as those of machine-learning (ML) algorithms. Subsequently, K means were employed to cluster the NPPM that were predicted to have a high DILI risk. An in vitro cell-viability assay was performed using HepaRG cells to validate the prediction results. RESULTS: ECFPs with the top 35% of features ranked by the F-value with support vector machine (SVM) yielded the best performance. The optimized SVM model achieved an accuracy of 0.761 and recall value of 0.834 on the test dataset. The silico screening for NPPM resulted in 47 ingredients with high DILI potential, which were clustered into six groups based on the elbow method. A representative subgroup that contained 21 ingredients, of which two dianthrones exhibited the lowest IC50 value (0.7-0.9 µM) and anthraquinones showed moderate toxicity (15-25 µM), was constructed. CONCLUSION: Using ML methods and in vitro screening, two classes of compounds, dianthrones and anthraquinones, were predicted and validated to have a high risk of DILI. The diparametric optimization method used in this study could provide a useful and powerful tool to screen toxicants for large datasets and is available at https://github.com/dreadlesss/Hepatotoxicity_predictor.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fallopia multiflora , Polygonum , Antraquinonas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Aprendizado de Máquina
20.
Pharm Biol ; 60(1): 1578-1590, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35949191

RESUMO

CONTEXT: Polygonum multiflorum Thunb. (Polygonaceae) (PM) can cause potential liver injury which is typical in traditional Chinese medicines (TCMs)-induced hepatotoxicity. The mechanism involved are unclear and there are no sensitive evaluation indicators. OBJECTIVE: To assess PM-induced liver injury, identify sensitive assessment indicators, and screen for new biomarkers using sphingolipidomics. MATERIALS AND METHODS: Male Sprague-Dawley (SD) rats were randomly divided into four groups (control, model with low-, middle- and high-dose groups, n = 6 each). Rats in the three model groups were given different doses of PM (i.g., low/middle/high dose, 2.7/8.1/16.2 g/kg) for four months. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and liver were quantitatively analyzed. Fixed liver tissue sections were stained with haematoxylin and eosin and examined under a light microscope. The targeted sphingolipidomic analysis of plasma was performed using high-performance liquid chromatography tandem mass spectrometry. RESULTS: The maximal tolerable dose (MTD) of PM administered intragastrically to mice was 51 g/kg. Sphingolipid profiling of normal and PM-induced liver injury SD rats revealed three potential biomarkers: ceramide (Cer) (d18:1/24:1), dihydroceramide (d18:1/18:0)-1-phosphate (dhCer (d18:1/18:0)-1P) and Cer (d18:1/26:1), at 867.3-1349, 383.4-1527, and 540.5-658.7 ng/mL, respectively. A criterion for the ratio of Cer (d18:1/24:1) and Cer (d18:1/26:1) was suggested and verified, with a normal range of 1.343-2.368 (with 95% confidence interval) in plasma. CONCLUSIONS: Three potential biomarkers and one criterion for potential liver injury caused by PM that may be more sensitive than ALT and AST were found.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Polygonum , Animais , Biomarcadores , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...